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Abstracl In view of the current interest in relativistic spin-I systems and the recent work on 
the Dirac oscillator, we introduce the Duflin-Kemer-Petiau OKPI equation obtained by using 
an external potentid linear in r. Since the spin-0 representation leads to a harmonic oscillator 
in the non-relativistic limit and becomes an harmonic oscillator with a spin-orbit coupling of 
the Thomas form for vector bosons, we call the equation the DKP oscillator. This oscillator is a 
relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We 
show that it conserves total angular momentum and that it is erocrly solvable for both scalar 
and vector DKP bosons, We calculate and discuss the eigenvalues and eigenstates of the DKp 
osciUator in the spin-0 and spin-I representations. 

1. Introduction 

The theory of the harmonic oscillator is important in physics since it enters all problems 
involving quantized oscillations. It has wide applications for systems with linear and 
quasilinear equations of motion. 

There has been a great deal of interest recently in the Dirac oscillator [I-@. It was shown 
that the Dirac oscillator, whose Hamiltonian is linear in T ,  conserves angular momentum, 
is exactly solvable and its eigenspectrum is highly degenerate. The interest in the Dirac 
oscillator is mainly motivated by using it as a quark-confining potential in QCD and also as 
a suitable analytic basis to deal with more realistic interactions. 

In view of the current interest in relativistic spin-1 systems 17-lo], it is the aim of this 
paper to analyse the Dan-Kemmer-Pctiau (DKP) oscillator in order to provide an analytic 
and mathematically simple basis with which more complex interactions can be studied. 

Unlike other relativistic wave equations for bosons, the DKP one is a first-order equation 
[ll]. We.therefore~introduce a system obtained from the free DW equation by a non-minimal 
substitution linear in T .  Since its spin-0 representation leads to a harmonic oscillator in the 
non-relativistic limit and it becomes a harmonic oscillator with a spin-orbit coupling of the 
Thomas form for vector bosons, we call the system a DKP oscillator. This system is a 
relativistic generalization of the quantum harmonic oscillator for scalar and vector particles. 
We demonstrate that it conserves total angular momentum and that it is exactly solvable 
for both scalar and vector DKP bosons. We also compute and discuss the eigenvalues and 
eigenstates of the DKP oscillator in both cases. 

2. The DKP oscillator 

For a free scalar or vector boson of mass m, the relativistic DKP equation is 

(1) (cp p + mc2)@ = %PO- a+ 
at 
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where the internal variables B’ (,U = 0, 1, 2, 3) satisfy the commutation relation 

Y Nedjadi and R C Barren 

ppp + pAp”p’ = g ’ y p  +&?“AB’. (2) 

In the spin-0 representation, fl’ are 5 x 5 matrices defined as 

i = 1 , 2 , 3  B O = ( ’  $ 6  ) 6 pi 0 )  or 0 

with 6, 6, 0 as 2 x 2, 2 x 3, 3 x 3 zero matrices, respectively, and 

while the dynamical state @ is a five-component spinor. For vector bosons, @ is a 10- 
component spinor and 6’” are 10 x 10 matrices given by 

where si are the usual 3 x 3 spin-I matrices 

O = ( O  0 0) e l = ( l  0~ 0 ) ~  e z = ( O  1 0) e s = ( O  0 1)  (4b) 

while I and 0 designate the 3 x 3 identity and zero matrices, respectively. 

~~ - 

For the external potential which we introduce with the non-minimal substitution 

p --f p - imoq’r (5) 

where o is the oscillator frequency and qo = 28’’ - 1, the DKP equation for the system is 

This external potential, which is of Loren&-tensor ype. does not conserve the orbital and 
spin angular momenta, since 

and [Pq’ . T ,  S] = i@qo A T )  (7) [pqo T ,  L] = -i@$ A T )  

but it does conserve the total angular momentum J = L + S. 
In the spin-0 representation, we set [12] 

so that for stationay states the DKP equation can be rewritten as 

mc2@ = E q  + ic(p + i m w )  A 
mc2p = Eq5 
mc’A = ic0, - i m ~ ~ ) @ .  
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Eliminating ~1 and A in favour of 4 yields the KIeidjordon equivalent equation 

(Ez - mZc4)q5 = [cz(pz + mzozr2) - 3fiwmc2] q5. (10) 

Using the relation E = E + mcz and the non-relativistic.limit E < mc2 transforms 
equation (10) into 

which describes the traditional isotropic harmonic oscillator. 

spinor [13] 
In the spin-1 representation of equation (6), the dynamical state q is the 10-component 

so that, for stationruy states, the equation of motion equation (6) decomposes into 

mc2v = icp- . B 

mcZB = EA + icp+(o 1 mczC = -cp- A A 

(13d 

(13~)  
(134 

where pi = p f imor. Since A and B are the 3-component spinors analogous to the 
Dirac upper and lower components, respectively, we seek the wave equation for A. Using 
equations (13a-d). it is straightforward to eliminate q, B and C in favour of A, so that 
one gets 

(E2 - m2c4)A = -c2p' A (p- A A) + czp+(p- . A) 

mc2A = E B  -cp+ A C  ( 1 3 ~  

(14) 
1 

mZ 
- -p+{p- * rp" A (p- A A)]]. 

Evaluating the first two terms on the right-hand side of equation (14) (see appendix) yields 

( E 2  - mzc4)A = [c2(p2 + m20Zr2) - 3homc2 - 2 h m c 2 L .  s]A 

(15) 
1 

m2 
- -p+@- . rp+ A (p- A A)]] 

where L is the orbital angular momentum and s the 3 x 3 spin-1 operator. In the non- 
relativistic limit E << mc2, the third term in equation (14) becomes negligible, since it is of 
order l/m3, so that the wave equation for A can be written 

A 1 
which characterises the usual harmonic oscillator in addition to a spin-orbit coupling, absent 
for scalar DKP bosons, of strength -hw. Note that the strength of this coupling is one half 
of that obtained from the Dirac oscillator[l]. 

Since both the spin-0 and spin-1 representations of equation (6) lead to the usual three- 
dimensional (3D) oscillator, in the non-relativistic limit we refer to the system it describes 
as the Duffin-Kemmer-Petiau oscillator. 
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3. Solution of the scalar DKP oscillator problem 

We now seek an exact solution to the S = 0 DKP oscillator eigenstate problem. In [12],  we 
showed that the most general eigensolution for a central-field problem is 

Y Ne&& and R C Barren 

where Y&(!2) are the normalized vector spherical harmonics while FnJ(r),  G.,(r) 
and &(r) are radial wavefunctions. Jnseaing @JM(T), which is of parity ( - l ) J ,  into 
equation (6) while setting U J  = ,/-, <J = J J m  and 

%(r) = G d r )  = G ( r )  f fdJ*i (r )  = H&i(r) (18) 

yields the following set of first-order coupled radial differential equations 

EF = mcZG 
+ -) F = -;mc 1 2  HI 

h 

d J + 1  mor) 
(dr r R ( d  J mwr)  H-1 = - 1 (mc2F - E G )  . hc -aJ -+--- H i + b  z - ; - ~  

(196) 

For the harmonic oscillator case, the coupling between the radial equations is simple so that 
inserting equation (19a-c) into (19d) leads to the homogeneous second-order differential 
equation 

This equation has the same form as the radial equation of the 3D harmonic oscillator and it 
is straightforward to show that its eigenvalues EN,J are 

where N is the principal quantum number defined as N = 2n + J ,  n being a non-negative 
integer representing the radial quantum number. The energy levels are equidistant and 
degenerate. For identification purposes, in what follows, it is (E;,, - m2c4)/2mc2 rather 
than ENJ to which we refer as energy levels, since the first form reduces to the usual 
Schrijdinger eigenvalue in the non-relativistic limit. The corresponding eigenfunctions are 
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IS the associated Laguerre polynomial of order It and A,,, is a normalization ( I + + ) .  where L, 
constant. The remaining radial wavefunctions are 

The normalization constant Anom can be computed using the orthonormalization condition 

4. Solution to the vector DKP oscillator problem 

For the S = 1 central-field problem, the general eigenfunction we use takes the form [13] 

Putting @ J M  into equation (6) results in ten coupled radial differential equations which 
can he decoupled into two sets associated with the (-1)’ and (-1)I+’ parities. We call 
the (-1)I solutions natural-pari@ (or magnetic-like) states while we refer to the (-l)I+I 
solutions as unnatural-parity (or electric-like) states 1131. With the notation 

RnIJ(r) = RO RnJJ+l(r) = R*I R E F,  G ,  H (27) 

the set associated with the (-l)J parity is 

2 EFo = mc Go 
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For unnatural-parity states, the radial differential equations are coupled in the following 
way : 

d J + l  mor 1 
d r r  A ) H~ = (mc*S - EGJ (294 ----- 

(29b) 

( 2 9 ~ )  

(294  

(294 

(29s) 

1 2  hc -+ - - -  HO = -G (mc F-1 - EG-I) 

-, -+- 
fic ----- ) q5 = -& (mc2G1 - E f i )  

q5 = - (mc2G-1 - EF-I )  Ac -+--- 

(d", 
d J + I + " )  4 - a J  (: ---+- ; m;) F-1 = -mc 1 2  HO 

A RC d r r  
d .7+1 mor 1 

dr r h 
1 

d J mor 1 2  

i' 
(: m;) CJ 

- 0 L J  ( d  -+- dr r J + l + E ) G l + { J ( - - -  A d r r  + -) A G - ~  = g m c  $. 

To obtain the exact solution for the magnetic-like states, we eliminate Go. HI in favour 
of FO in equation (28d). This yields the homogeneous second-order differential equation 

which is similar to the three-dimensional non-relativistic oscillator Scbrodinger equation. 
The eigenvalues are 

with the principal quantum number N = 2n + J (n is the radial quantum number). Note 
that the oscillator levels are equidistant and degenerate; the zero-point energy differs here 
from that found for the scalar DKP bosons. The associated eigenfunctions are 

Using Fo, the remaining radid components of the DKP spinor can be trivially deduced from 
equations (28a-c). 

To proceed with the exact solutions of the radial equations associated with unnatural- 
parity states, equations (29a-f) are transformed into 

J ( J  + ") 4 = 2 J m E o H o  
(Ez  - m2c4) 3mw m202r2 ($+ @ C Y  A A2 r2 
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The problem look much simpler now since equations ( 3 3 0 4 )  describe two coupled three 
dimensional oscillator equations; once q5 and HO are determined, the remaining radial 
wavefunctions can be deduced in a straightforward way using equations ( 3 3 4 .  

It i s  worth noting that the two coupled second-order differential equations manifestly 
decouple for J = 0. In this case, one has to solve the trivial problem of two decoupled 
onedimensional harmonic oscillators. 

For the unnatural parity states with J > 0, these two equations can also be solved 
exactly. This can be done by the diagonalization procedure 

which decouples equations (33a-b) into the following radial equations: 

E2-m2c4  mm o 
- 2 - + - ~ m 2 c 4 + 4 J ( J + 1 ) E 2  % + ( (hc)2 h hC2 

R + = O  

+ 4 J ( J  + 1)E2 
R Rc2 

( 3 5 4  

The eigenfunctions R+ and R- are orthogonal. Note that for J = 0, the wave functions 
@ and HO coincide with R+ and -R-,  respectively, thus verifying the consistency of 
equations (35a-b), which in this case reduce to equations (33a-b). Equations (3%-b) 
have the form usual for the three-dimensional harmonic oscillator, albeit with a complicated 
energy term. It is straightforward to show that the eigenvalues E+ of equation (35a) satisfy 

(E: - m 2 c 4 ) + f i w J m Z c 4 + 4 J ( J +  1)E: = ( 2 N + 3 ) h o m c Z  ( 3 6 ~ )  

with the principal quantum number N being a positive integer, whereas those of 
equation (3%) (denoted E - )  follow 

( 3 W  ( E - - m  2 2 4  c ) - R w J m 2 c 4 + 4 J ( J + 1 ) E ! = ( 2 N + 3 ) h w m c 2 .  

The solutions of the nonlinear eigenvalue equations ( 3 6 ~ - b )  take the form . 

where 

( a1 fio a2 ( i w  )2)”2 

aomc2 a0 mc2 
A = R w ( J + ; )  I + - - + -  - 
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withm = ( 2 J f 1 ) 2 , a l  = 4 J ( J + 1 ) ( 2 N + 3 )  andaz=4J2(J+1)2.  
Note. that for J = 0, the E* eigenvalues agree exactly with those that one would obtain 

directly from equations (33a-b), which describe two decoupled onedimensional oscillators 
with different zero-point motions; this verifies the consistency of our result. 

As shown in equation (37a), the energy of the DKP oscillator in unnatural-parity states 
involves the usual three-dimensional harmonic oscillator energy, a second term proportional 
to J ( J +  1) which appears as some kind of rotational energy and a third energy contribution 
A which is a complicated function of the oscillator frequency, J and N with no obvious 
physical interpretation. 

In the limit where the oscillator frequencies are such that Ro << m$, keeping only the 
first-order term in o in equations (37) leads to 

Y NeGadi and R C Barren 

( 3 W  

(38b) 

1 2 2 4 - +  

1 2 2 4 - -  

-(E+ - m c ) = &, N (N - J + 1)fiw 
2mc2 

-(E- - m c ) = c",~, r (N + J + 2)fio. 
2mc2 

This shows that our solutions have the correct non-relativistic limits since the levels 
in equations (38) are those of a usual 3D non-relativistic oscillator with a spin-orbital 
coupling of strength 40. In this limit, they could have also been obtained directly from 
equation (16). Furthermore, taking this limit suggests the interpretation of the E+ and 
E- energies as 'spin-orbit partners', E+ being associated with J = L + 1 and E- with 
J = L - 1. This is best illustrated in figure 1 which shows, for fixed values of N and J ,  
the variations of the relativistic and non-relativistic eigenenergies with ho/mc2.  

The unnatural-parity E+ levels for N < 9 are presented in figure 2 alongside the c&, 
and the ( N  + :)Eo levels for reference. The non-relativistic spectrum is simple: the levels 

0.0 
0.0 0.2 0.4 0.6 0.8 1 .o 

h a l m 2  

Figure 1. Variation of the DKP and non-relativistic oscillator energies with o. 
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are equidistant, separated by Z w ,  and increase in energy as N - J increases from 1 to 9. 
For a given value of N - I, all the energy levels (N, JK) (with N - J odd and J c N) are 
infinitely degenerate. We call these levels with a definite N - J the oscillator shell. This 
accidental degeneracy is not present in the exact DW-OSCillator E+ eigenspectrum which 
displays only a (23 + 1) degeneracy arising from its rotational invariance. The eigenstates 
are found to cluster in several groups of states belonging to fixed values of N - J, i.e. 
they are associated with the same oscillator shell in the non-relativistic l i t  Within each 
band of states, the levels decrease in energy with increasing total angular momentum J, 
the bandheads being the (N, 0-) states. These properties are analogous to the situation 
where N (instead of N - J )  is the quantum number that specifies the degenerate levels of 
a non-relativistic harmonic oscillator or the major shells of the nuclear shell model. Note 
that unlike J > 0 which have lower energies than their non-relativistic counterparts, the 
( N ,  0-) bandheads have the same energy as their non-relativistic analogues and increase in 
energy (as do the hands) with increasing N - J. 

The E- eigenspectrum is now presented in figure 3 together with the non-relativistic e;r, 
energy levels for N Q 9. The latter are Bo-equidistant and increase as N +  J increases from 
1 up to its maximum value of 17. While all the non-relativisitic ( N ,  J') levels associated 
with the same N + J oscillator shell (with N + J odd and J < N )  are degenerate, with a 
finite degeneracy in this case, their relativistic analogues are not. The eXact,DKP oscillator 
states are found to cluster into bands of states belonging to specific values of N + J. Within 
all the major shells, the energy levels rise with increasing J starting from the ( N ,  0-) 
bandhead states. The ( N ,  0-) bandheads, which are equidistant in energy, coincide with 
their non-relativistic counterparts whereas the ( N ,  J') states lie at higher energies than their 
non-relativistic analogues. 

For a more quantitative analysis of the bands in the DKP oscillator spectra, we first show 
in figure 4 the energies of the N - J = 1 band as a function of J(J + 1) for different values 
of the oscillator frequency. For a given frequency, the levels within this major shell, as well 
as the spacings between them, are seen to decrease with increasing angular momentum. For 
larger oscillator frequencies, the energies for any given angular momentum and the gaps 
between adjoining levels rise but the overall band pattem of decreasing oscillator energies 
with increasing angular momenta is maintained. Figure 5 displays different N - J bands 
for a fixed oscillator frequency as a function of J(J + 1). Here also the major shells have 
the same energy decaying with increasing J behaviour although for any given value of J, 
the energies and the intervals between adjacent levels increase as N - J increases. 

We now tum to the second class of bands of this DKP oscillator. As an example, figure 6 
plots all E- energy levels belonging to the N + J = 49 band versus J(J + 1) for different 
oscillator frequencies. (Since the pattem is the same for all major shells, this large value 
of N + J is chosen to involve a large number of states.) It is indeed remarhble that 
the DKP oscillator energies constitute nearly perfect rotational hands. There are deviations 
from the rotational patterns at low angular momenta. These single-particle rotational bands 
are of the finite type since for N + J fixed, they terminate at some J- The effective 
rotational moments of inertia are sensitive to the oscillator frequencies since the slopes of 
the bands are found to vary substantially with increasing o. Figure 7 altemately represents 
the energies of five different N + J bands for a specific oscillator frequency as a function 
of J ( J  + 1). The DKP oscillator energies now lie on rotational bands whose slopes hardly 
change with N + J. This implies that the effective rotational moments of inertia are rigid 
and insensitive to such variations. 

Of course, it should be pointed out that these rotational bands are unlike the usual ones in 
which the levels are associated with the same intrinsic motion but different angular momenta. 
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t i o = l O M e V  
m c 2 = 1  GeV 

Non-Rei. DKP 
21I2fiw 

191280 

1712fiw 

15Ef im 

13/2fiw 

11nrw 

912 fi w 

712 fi w 

512 fi w 

Figure 2. DKP and non-relativistic spectra zsociated with J = L + I for N < 9. The E+ 
DKPOSCih3tOr levels are on the right, non-relativistic E&, energies lying in the Centre. The 
(N + 3)ho stam on the lee are given for reference. The dotted lines between the DKP and 
non-relativistic oscillator levels link states with the same quantum numbers (N. J”) .  
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ti w = 10 MeV 
m c 2 = 1  GeV 

...... 
DKP 
L Non-Rel. ..*.. .1 I .... ..' 

N + J = 17 ..... 

19/2tiw 

17I2fiw 

15Mfiw 

13/2fiw 

.... ,..' 
7/2fim N = Z  ........ 

N + J = l  ...................... ......... ........ 
512 ti w = ...... 

Figure 3. DKP and non-relativistic oscillator energy levels associated with J = L- i for N < 9. 
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0.20 

- 61 = 0.3 GeV - w=O.SGeV - o=0.7GeV ti O.I5  --. w=0.9GeV 
8 
P fi 0.10 

x 

b 
I m 
U 
- - .- 

0.05 

0.00 
0.0 500.0 1000.0 1500.0 2000.0 2500.0 

J ( J + i )  

Figure 4. Energy levels of the N - J = 1 band as a function of J ( J  4- 1) for different oscillator 
fresuencies. 

5.0 v I 

1 - N - J = I  
- N - J = 9  
-N-J=15 
-N-J=21 
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I W N - J =27 
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".1 

0.0 500.0 1000.0 1500.0 2000.0 2500.0 
J ( J + I )  

Figured EnergylevelsoftheN-J = 1,9, 15.21.27bandsversus J(J+L)forfio=O.ZGeV. 
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150.0 

H W=0.3GeV 
w = 0.5 GeV 

M w = 0.7 GeV 
W w = 0.9 GeV g 2 100.0 

> P m e 
W 
5 
m 
B 50.0 
- - - 
5 

0.0 
0.0 200.0 400.0 

J ( J +  1). 
1.0 

F i w  6. EnergY levels of the N + I = 49 band as a functioo of 1(1+ 1) for diisrent oscillator 
frequencies. 

-7 60.0 

M N + J = 49 
I--. N + J =41 

50.0 - a N + J = 3 5  
t--i N + J =29 
I--T N + J = 23 
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h ,n v 
v 

40.0 - 
e 
w 

0.0 200.0 400.0 
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2 
600.0 

Figure 7. Energy levels of the N + J = 23, 29. 35. 41. 49 bands agdinst J ( J  + 1) for 
hw = 0.2 Gev. 
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Here the single particle states involve different radial as well as rotational motions. Note 
that this behaviour is not particularly tied to this DKP oscillator. Buck [14] also found that, 
when solving the Schriidinger equation for deep, bell-shaped potentials, the levels with a 
fixed value of N = 2n + t (these states are degenerate for a harmonic oscillator) lie on a 
straight line when plotted against l(t + 1). Geometric arguments in terms of the shapes of 
the potentials which can give rise to these rotational-like bands have been put forward to 
explain this behaviour [14,151. 

Finally, the radial wavefunctions have to be defined so as to complete the solution. 
The eigenfunctions R+ and R- have the same form as those of the usual three-dimensional 
non-relativistic harmonic oscillator. All the radial components of the DKP spinor can now 
be determined from equations (33c-d) and (34). The normalization condition 

Y Nedjadi and R C Barren 

has to be used to normalize the wavefunctions. 

5. Conclusion 

We have introduced a new potential in the DKP equation. Since in the non-relativistic limit 
the DKP equation of motion for scalar bosons leads to the usual harmonic oscillator and 
becomes a harmonic oscillator with a spin-orbit coupling of the Thomas form for vector 
bosons, we call the system a DKP oscillator. This oscillator is a relativistic generalization 
of the quantum harmonic oscillator for scalar and vector bosons. We have shown that it 
conserves the total angular momentum and that it is exactly solvable, and we have computed 
and discussed the eigensolutions for scalar and vector bosons. 

The renewed interest in the Dirac oscillator has generated studies of, for instance, its 
group-theoretical properties [16] and hidden supersymmetry 15,173. Such investigations of 
the DKP oscillator would be most useful to gain further insight into the physical meaning 
of this oscillator. 
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Appendix 

Using the spin-1 representation for which 

( s m h  = -hm (AI) 

&klm being the totally antisymmetric Levi-Civita symbol, we have 

p+ A (p- A A) = p ( p .  A) - p ' A + m ' ~ ~  ( ~ ( 7 .  A) -?A) +"(2 + L * s)A (A2) 

and 

P'(p- * A) = p ( p .  A) + ~ ' w ' T ( T  A) - m0(1+ L s)A. (A3) 
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